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Abstract Suppose X = {X1, X2, . . ., Xm} is a system of real smooth vector fields on an
open neighbourhood � of the closure of a bounded connected open set M in R

N satisfying
the finite rank condition of Hörmander, namely the rank of the Lie algebra generated by
X under the usual bracket operation is a constant equal to N . We study the smoothness of
solutions of a class of quasilinear equations of the form

QXu =
m∑

j=1

X∗
j a j (x, u, Xu)+ b(x, u, Xu) = 0

where a j , b ∈ C∞(�×R×R
m; R). It is shown that if the matrix

(
∂a j

∂ξi

)
is positive definite

on M × R
m+1 then any weak solution u ∈ C2,α(M,X) belongs to C∞(M).

Keywords Vector fields · Hörmander’s finite rank condition · Quasi metric · Subelliptic
quasilinear equation
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1 Preliminaries

Let M be a bounded connected open set in R
N and� be an open neighbourhood of M in R

N .
Suppose X = {X1, . . . , Xm} be a system of real C∞ vector fields on �. Assume that the
system X satisfies the finite rank condition of Hörmander (see Sect. 2). Suppose

a j , b ∈ C∞(�× R × R
m; R)
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such that the m × m matrix
(
∂a j

∂ξi
(x, u, ξ)

)

is positive definite for all (x, u, ξ) ∈ �×R
m+1. Consider the subelliptic quasilinear equation

of the form

QX(u) =
m∑

j=1

X∗
j a j (x, u, Xu)+ b(x, u, Xu) = 0 in M

Definition 1 A weak solution of the quasilinear equation is a function u ∈ L1
loc(�) such

that

∫

M

⎧
⎨

⎩

m∑

j=1

a j (x, u, Xu)X jϕ + b(x, u, Xu)ϕ

⎫
⎬

⎭ dx = 0, for all ϕ ∈ D(M)

1.1 Motivation

Suppose

Pu =
N∑

i, j=1

ai j (x)∂xi ∂x j u +
N∑

i=1

ai (x)∂xi u + a0(x)u = f in M

is a linear degenerate elliptic equation in the sense that the principal symbol matrix is only
positive semi definite:

N∑

i, j=1

ai j (x)pi p j ≥ 0, for all (x, p) ∈ �× R
N

with coefficients

ai j , ai a0 ∈ C∞(�) and a0 < 0 in �.

In any open subsetω of�where the rank of the principal symbol matrix (ai j (x)) is a constant
the equation Pu = f can be written in the form of Hörmander’s operator

Pu =
m∑

j=1

X2
j u + X0u + a0(x)u = f

where X0, X1, . . ., Xm is an appropriate system of C∞ real vector fields on �. The hypoel-
lipticity of such operators under the hypothesis of finite rank was proved in the fundamental
work of Hörmander [3].

1.2 Subelliptic variational problem

Quasilinear equations of the type considered here arise as the Euler-Lagrange equations in
variational problems to determine stationary points of functionals of the form

F (u) =
∫

M
F(x, u, Xu) dx; where F ∈ C∞(�× R × R

m; R)
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with

a j (x, u, ξ) = ∂F

∂ξ j
(x, u, ξ) and b(x, u, ξ) = ∂F

∂u
(x, u, ξ)

2 Fundamental assumptions

For any two smooth vector fields X , Y the commutator [X, Y ] is the vector field defined in
the standard manner

[X, Y ] = (ad X)(Y ) = XY − Y X

For I = {i1, . . . , ik} where i1, . . . , ik ∈ {1, . . . ,m} we shall denote by

X I = [Xi1 , [Xi2 , . . . , [Xik−1 , Xik ]]]
the commutator of vector fields of the system X of order |I | = k.

(A1)—The finite rank condition of Hörmander:
There exists an integer r ≥ 1 such that the system of vector fields X together with their
commutators X I of orders |I | = k ≤ r span the tangent space Tx M for all x ∈ M .

Consider the Lie algebra G(X) generated by the vector fields X = {X1, · · · , Xm} under
the the bracket operation [X, Y ], i.e. the C∞(�; R)—module generated by the commutators
X I :

G(X) = {Z =
∑

f ini te

αI X I ;αI ∈ C∞(�; R)}

The condition (A1) is equivalent to saying that there exists an integer r ≥ 1 such that
∀x ∈ �

rankxG(X) = dimRthe vector space {Z(x); Z ∈ G(X)} = N = dim�

Roughly speaking, the missing vector fields to form a basis of the tangent space Tx� at each
point can be recovered by taking the commutators X I of orders |I | atmost r .

Example—In � = R
2
(x,y) taking X = {X1, X2} = {∂x , x∂y} we have [X1, X2] = ∂y so

that X1, [X1, X2] generate Tx R
2 at every point x ∈ R

2 and hence r = 2.
We also need a technical assumption which we assume in the rest of the following:

(A2)—For each r ′ with 1 ≤ r ′ ≤ r the dimension of the space spanned by the commutators
of length |I | ≤ r ′ is locally a constant.

The vector fields and their commutators can easily be expressed in local coordinates as
follows: Let

Xi =
N∑

k=1

hk
i (x)∂xk , i = 1, . . . ,m

Then the commutator is given by

[Xi , X j ] =
N∑

k,l=1

{hk
i (x)(∂xk hl

j (x))∂xl − hl
j (x)(∂xl h

k
i (x))∂xk }
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The distribution adjoint of X j can be calculated as follows:

〈
X∗

j u, ϕ
〉
= 〈

u, X jϕ
〉 =

〈
u,

N∑

k=1

hk
j (x)∂xkϕ

〉

= −
〈

N∑

k=1

∂xk (h
k
j (x)u), ϕ

〉
= − 〈

X j u, ϕ
〉−

〈(
N∑

k=1

∂xk hk
j

)
u, ϕ

〉

and hence

X∗
j = −X j − h̃ j (x), with h̃ j ∈ C∞(�).

3 The geometry associated to the system of vector fields X

Following E.M. Stein and L.P. Rothschield, the assumptions (A1), (A2) lead to introduce a
quasi-metric ρ(x, y) defined locally on � as follows;

For each x ∈ � we can choose a family of vector fields

{X jk; 1 ≤ j ≤ r, 1 ≤ k ≤ k j }
where {X jk} is a commutator of order = j , 1 ≤ k ≤ k j such that for any 1 ≤ r ′ ≤ r the
space spanned by the family {X jk; j ≤ r ′, 1 ≤ k ≤ k j } is precisely the space spanned by
all the commutators of orders ≤ r ′. We may assume {X jk} to be linearly independent. If Er ′ ,
for r ′ ≤ r , denotes the vector space spanned by all commutators of orders ≤ r ′ then

E1 ⊂ E2 ⊂ . . . ⊂ Er = Tx (�)

.
By the local existence and uniqueness theorem for ordinary differential equations it fol-

lows that, for each x ∈ � there exists a neighbourhood Vx (where the exponential map is
well defined) such that any y ∈ Vx can be represented as

y = exp
(∑

a jk X jk

)
(x)

The mapping � : y → (a jk) is a local C∞-diffeomorphism of Vx to a neighbourhood of
the origin in R

N .

(a jk); 1 ≤ j ≤ r; 1 ≤ k ≤ k j

are called canonical coordinates of y with respect to the choice of the system (X jk)

Remark 1 In the Euclidean space R
N , taking X = {X1, . . . , X N } =

{
∂
∂x1
, . . . , ∂

∂xN

}
we

have r = 1, ρ(x, y) = dE (x, y) =
√∑

(y j − x j )2 and y j − x j = exp(a j
∂
∂x j
(x)), i.e.

y = x +∑
a j ej and (a1, . . . , aN ) are the canonical coordinates of y of origin x with respect

to the system X.

Definition 2 (E.M. Stein and L.P. Rothschield) The local quasi-metric ρ on� is defined for
y ∈ Vx by

ρ(x, y) =
(∑

|a jk |
2r !

j

) 1
2r !
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We denote, for R > 0 the ρ-ball of centre x and radius R by

Bρ(x, R) = {y ∈ Vx ; ρ(x, y) < R}
3.1 Properties of the local quasi-metric ρ

The local quasi-metric ρ(x, y) has many properties similar to that of the Euclidean metric,
some of these useful properties are recalled below:

Let Vx0 be the local diffeomorphism neighbourhood of a point x0 ∈ � used to define the
local metric ρ.

(a) There exists a constant C > 0 such that

C−1|x − y| ≤ ρ(x, y) ≤ C |x − y| 1
r , ∀x, y ∈ Vx0

where r ≥ 1 is the order of the commutators in the condition of Hörmander (Assumption
(A1))

For δ0 > 0 such that Bρ(x, δ0) ⊂ Vx0 we have

the Lebesgue measure of Bρ(x, δ) = |Bρ(x, δ)| ≤ const.|λ(x)|δd, for 0 < δ ≤ δ0

where

λ(x) = det(X jk) and d =
∑

j≤r

jk j

We also recall that N = ∑
j≤r k j .

Moreover any compact set K ⊂ Vx0 can be covered by a finite number ofρ-balls Bρ(x, δ0).
For any compact set K ⊂ Vx0 there exists an ε0 > 0 such that

BE (x, c1ε
r ) ⊂ Bρ(x, ε) ⊂ BE (x, c2ε). 0 < ε ≤ ε0

where BE stands for the Euclidean ball, with some constants c1 and c2 [5,7].
(b) Regularity of ρ: ρ ∈ C∞(Vx0 × Vx0) and for any J = ( j1, . . . , jk) with j1, . . . , jk ∈

{1, 2, . . . ,m} we have

|X Jρ(x, y)| = |X j1 X j2 . . . X jkρ(x, y)| ≤ cJρ(x, y)1−|J |

Here the derivations X ′
ji

s act either in the variables x or in the variables y in Vx0 .
(c) For any compact set K ⊂ Vx0 such that

K3ε = {x ∈ R
N ; ρ(x, y) < 3ε, y ∈ K } ⊂ Vx0

there exists a smooth test function ψ ∈ D(K3ε) such that

0 ≤ ψ(x) ≤ 1, and ψ(x) = 1 on K ,

and we have

|X Jψ(x)| ≤ CJ ε
−|J | for all J = { j1, . . . , jk}

(d) Cut off and regularizing functions in the geometry asociated to the system X:
Let

h(t) =
⎧
⎨

⎩
exp

(
1

t2−1

)
for t ≤ 1

0 otherwise
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and define

ϕ(x) = ε−N h

(
ρ(x, 0)

ε

)
∈ D(ρ(x, 0) ≤ ε)

4 Function spaces associated to the system of vector fields

In order to study weak solutions of the quasilinear equation QXu = 0 we introduce the
following natural spaces of Sobolev type:

Let p ≥ 1 and k ∈ N. Define

W k,p(M,X) = { f ∈ L p(M); X J f ∈ L p(M), for all J = { j1, . . . , jk}}
where X J f = X j1 X j2 · · · X jk f with its natural norm

|| f,W k,p(M,X|| =
⎛

⎝
∑

|J |≤k

||X J f, L p(M)||p

⎞

⎠

1
p

W k,p(M,X) is a Banach space which is reflexive if 1 < p < +∞ and is seperable for
1 ≤ p < +∞.

W k(M,X) = W k,2(M,X) is Hilbert space
and
W k,p

0 (M,X) is the closure of the space of smooth functions D(M) in W k,p(M,X).

The dual space of W k,p
0 (M,X) is the space of all distributions on M which can be repre-

sented (in a non unique way) as a distribution

g0 +
m∑

j=1

X∗
j g j with g0, g1, . . . , gm ∈ L p′

(M),
1

p
+ 1

p′ = 1

where X∗
j g j is taken in the sense of distributions , that is

f →
∫

M

⎛

⎝g0 f +
m∑

j=1

g j X j f

⎞

⎠ dx, for all f ∈ Wk,p
0 (M,X)

4.1 Properties

Assume that X satisfies the assumptions (A1) and (A2).

(a) For all k ≥ 1 and p ≥ 1 we have the continuous inclusion W k,p
0 (M,X) → W

k
r ,p(M),

the classical Sobolev space.
This is a consequence of hypoellipticity of the subelliptic operator of Hörmander

LX =
m∑

j=1

X∗
j X j + c(x), with c ∈ C∞(M)

(b) Using the classical embedding theorem for Sobolev spaces we get the embedding

W k,p
0 (M,X) → L p(M) where

1

p
= 1

p
− k

dr
when kp < dr

123



J Glob Optim (2008) 40:245–260 251

and

W k,p
0 (M,X) → Cl(M) when

k

r
− d

p
> l ≥ 0

with a constant of inclusion = const.[meas.(�)] k
r − d

p .
(a′) There exists an s > 0 (independent of p ≥ 1) such that for any compact subset K in

M there is a constant c = c(p, k) so that

‖u,W s,p(M)‖ ≤ c‖u,W 1,p(M,X)‖ for any u ∈ D(K )

(c) Interpolation lemma—If M is a subdomain of � with C∞ - boundary then for any
ε > 0 and 0 < |J | < k there exists a constant c(ε, k) such that

‖X J u, L p(M)‖ ≤ ε‖u,W k,p(M,X)‖ + c(ε, k)‖u, L p(M)‖
(d) Poincaré inequality—

(i) For any x0 ∈ M there exists an R0 such that

‖ϕ, L p(Bρ(x0, R))‖ ≤ cR
m∑

j=1

‖X jϕ, L p(Bρ(x0, R))‖

for all ϕ ∈ W 1,p
0 (Bρ(x0, R),X), where 0 < R ≤ R0

(ii) Suppose there is atleast one vector field X j in the system X which can be globally
straightenned in M then

‖ϕ, L p(M)‖ ≤ c(diamM)
m∑

j=1

‖X Jϕ, L p(M)‖ for all ϕ ∈ W 1,p
0 (M,X)

(iii) (L.P. Rothschield and E.M. Stein)—There exist c > 0 and R0 > 0 such that, for
all x0 ∈ M with Bρ(x0, 2R) ⊂ Vx0 , we have

∫

Bρ(x0,R)
|u(x)− u R |p dx ≤ cRp

∫

Bρ(x0,R)

m∑

j=1

|Xju|p dx

where u R = 1
|Bρ(x0,R)|

∫
Bρ(x0,R)

u(y) dy, and |Bρ(x0, R)| denotes the Lebesgue
measure of the ρ ball Bρ(x0, R).

(e) Truncation method of Stampacchia—
In the proofs of boundedness and that of Hölder continuity of weak solutions of the quasi-

linear subelliptic equation an essential idea is the use of the technique of Stampacchia, namely
that of using suitable truncations of the solution itself as test functions in the definition of
weak solutions [4,8]. We have the following result due to C.-J. Xu:

Theorem 1 (C.-J. Xu) Let u ∈ W 1,p
0 (M,X) and k ≥ 0. Then

u(k)(x) = max(u(x)− k, 0)

belongs to W 1,p
0 (M,X) and more over

X j u
(k)(x) =

{
X j u(x) a.e. in Ek = {x ∈ M; u(x) > k}
0 elsewhere
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The proof consists in first proving the result for an approximating sequence of smooth func-
tions {uν} in D(M). Since {X j u

(k)
ν } is a bounded set in L p(M) one uses the standard weak

convergence arguments combined with some delicate measure theoretical arguments as in
Stampacchia.

In order to prove C∞-regularity of solutions of linear and then of qusilinear equations of
subelliptic type we shall use function spaces of Hölder type adapted to the geometry defined
by the system of vector fields.

5 Function spaces of Hölder type in the geometry associated to the system of vector
fields X

We denote by

C (V,X) = C0(V )

For α ∈ (0, 1)

C 0,α(V,X) = { f ∈ C0(V ); | f (x)− f (y)| ≤ cρ(x, y)α}
and is provided with the semi-norm

[ f ]X,α = [ f ]X,α,V = sup
x,y∈V,x �=y

| f (x)− f (y)|
ρ(x, y)α

For k ∈ N and α ∈ [0, 1],
C k,α(V,X) = { f ∈ C 0,α(V,X); X J f = X j1 . . . X jh f ∈ C 0,α(V,X),

for all J = ( j1, . . . , jh), with | j | = h ≤ k}
let

[ f ]X,k,0 =
∑

|J |=k

sup
x∈V

|X J f (x)|

[ f ]X,k,α =
∑

|J |=k

[X J f ]X,α

We define the norm

‖ f,C k,α(V,X)‖ =
k∑

j=0

[ f ]X, j,0 + [ f ]X,k,α

The properties of ρ(x, y) give the following standard properties of these function spaces.
Recall that r ≥ 1 is the number such that the commutators of length ≤ r span the tangent
space at each point.

1. C k,α(V,X) is a Banach space.
2. C 0,α(V,X) is continuously embedded in C0, αr (V ), the classical space of Hölder con-

tinuous functions of exponent αr .
3. C kr,0(V,X) is continuously embedded in Ck,1(V ), the space of all Ck(V ) functions with

all the k-th order derivatives Lipschitz continuous in V .
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4. If F: V ×R
m → R is a C∞-function and z ∈ C k,α(V,X) then F(x, z(x)) ∈ C k,α(V,X).

5. If (k, α), ( j, β) ∈ N × [0, 1] are such that k + α > 0 and j + β < k + α then any
bounded set B in C k,α(V,X) is relatively compact in C j,β(V,X).

6. Interpolation inequality - Suppose (k, α), ( j, β) ∈ N × [0, 1] are such that k + α > 0
and j +β < k +α. Then for any ε > 0 there exists a constant cε = c(ε, j, k, V, r) such
that

‖u,C j,β(V,X)‖ ≤ ε‖u,C k,α(V,X)‖ + Cε‖u, L∞(V )‖

6 Minimization problem for the functional F (u)

Suppose F : �× R × R
m → R ∈ C0 and satisfies the following conditions:

(i) ξ → F(x, u, ξ) is a convex function for all (x, u) ∈ M × R;
(ii) F(x, u, ξ), ∂F

∂u (x, u, ξ) and ∂F
∂ξ j
(x, u, ξ) are continuous functions on M × R × R

m ;
(iii) there exist p > 1 and a constant c0 > 0 such that

F(x, u, ξ) ≥ c0‖ξ,Rm‖p.

Then we have the following existence theorem:

Theorem 2 Assume that the system of vector fields X satisfies the assumptions (A1) and
(A2), and further that there is atleast one vector field of the system X which can be straight-
enned globally in M. If F satisfies the conditions (i), (ii) and (iii) and if there exists a function
v ∈ W 1,p

0 (M,X) such that F (u) < +∞ then there exists a minimum u ∈ W 1,p
0 (M,X) for

the functional F .

In order to prove the regularity of the minimizing solution of the subelliptic variational prob-
lem it is natural to seek conditions on F defining the functional F so that the solution of
the variational problem is also the weak solution of the associated Euler–Lagrange equation,
which is of the form of the subelliptic equation QX(u) = 0 with

a j (x, u, ξ) = ∂F

∂ξ j
(x, u, ξ) and b(x, u, ξ) = ∂F

∂u
(x, u, ξ)

For simplicity we consider the case p = 2.

Theorem 3 Suppose the function F satisfies the following conditions:
There exist functions h0 ∈ L1(M), h1 ∈ L2(M) and h2 ∈ L2(M) where

1

2
= 1

2
− 1

Nr
and

1

2
+ 1

(2)′
= 1

such that

|F(x, u, ξ)| ≤ const.{‖ξ,Rm‖2 + |u|2 + h0(x)}

|∂F

∂u
(x, u, ξ)| ≤ const.{‖ξ,Rm‖ 2

(2)′ + |u|2−1 + h1(x)}

| ∂F

∂ξ j
(x, u, ξ)| ≤ const.{‖ξ,Rm‖ + |u| q

2 + h2(x)}
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with some 1 < q < 2. Then the minimizer of the functional F is also the weak solution of
the quasilinear equation

m∑

j=1

X∗
j
∂F

∂ξ j
(x, u, Xu)+ ∂F

∂u
(x, u, Xu) = 0

.

The proof consists of a straight forward computation of the first variation of the functional
and the assumptions on the function F justify the necessary derivations.

7 Boundedness of the minimizer of the functional F (u)

The first step in the study of regularity of the minimizer is to prove the boundedness of the
solution u. This requires growth conditions on the function F . More precisely we have the
following result:

Theorem 4 Suppose X satisfies the assumption (A1), namely the finite rank condition of
Hörmander and that there is atleast one vector field of the system X which can be globally
straightenned in M. Suppose given f ∈ W 1(M,X)∩ L∞(∂M) and let ‖u, L∞(∂M)‖ ≤ M0.
Assume that the function F satisfies the following growth conditions: there exist constants
c1 ≥ 0 and c2 ≥ 0 such that

{
F(x, u, ξ) ≥ c1‖ξ,Rm‖2 − c2|u|q − f (x)|u|2
F(x, u, 0) ≥ c2|u|q + f (x)|u|2

for |u| ≥ M0 where 2 < q < 2 = 2Nr
Nr−2 . If u ∈ W 1(M,X) is the minimizer of the functional

F on the affine subspace {v ∈ W 1(M,X); v − f ∈ W 1
0 (M,X)} then u ∈ L∞(M) and is

bounded by a constant depending on N , r, ‖ f ‖L2 , ‖X f ‖L2 ,meas M, c1, c2.

The proof makes use of the truncations u(k) with k ≥ M0 and the fact that uk = u − u(k)

belongs to the affine subspace and comparing the functional and estimating using the growth
conditions [9,10].

8 Hölder continuity of weak solutions of the quasilinear equation QX(u) = 0

Let M be a bounded connected open subset of�. Assume that X satisfies the assumptions (A1)
and (A2). Suppose a j , b ∈ C∞(� × R

m+1) and satisfy the following structure conditions:
there exist positive continuous functions f, g: � → R+ such that

⎧
⎪⎪⎨

⎪⎪⎩

∑m
j=1 a j (x, u, ξ)ξ j ≥ c0‖ξ,Rm‖2 − g(x)2

|a j (x, u, ξ)| ≤ c1{‖ξ,Rm‖ + g(x)}
|b(x, u, ξ)| ≤ c2{‖ξ,Rm‖2 + f (x)}
for (x, u, ξ) ∈ �× R × R

m

Theorem 5 (C.-J. Xu) If u ∈ W 1(M,X) is a weak solution of the quasilinear equation

QX(u) =
m∑

j=1

X∗
j a j (x, u, Xu)+ b(x, u, Xu) = 0
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i.e. u ∈ W 1(M,X) and for all ϕ ∈ D(M),

∫

M

⎧
⎨

⎩

m∑

j=1

a j (x, u, Xu)(X jϕ)+ b(x, u, Xu)ϕ

⎫
⎬

⎭ dx = 0

then for any connected sub-domain ω ⊂⊂ M there exist constants c > 0 and 0 < λ < 1
such that

‖u,C0,λ(ω)‖ ≤ c

{
sup
x∈M

|u(x)| + K ( f, g)

}

with K ( f, g) depending on the norms of f + g2 in Lq̃(M) and of g in Lt (M) where

1

q̃
= 2

q
− 1

N
+ r

q
and

1

t
= 1

q
+ r

q
− 1

N

for some q ∈ (Nr, N (r + 1)).

8.1 A brief idea of the main steps in the proof

The proof is rather long but uses the standard arguments as in the theory of second order
elliptic equations due to Stampacchia and Moser. First of all the weak solution is shown to
be bounded using its truncations u(k) as test function in the definition of the weak solution.
Next by the method of Moser one proves a Harnack type inequality from which one obtains
the Hölder continuity of the weak solution.

9 C∞-regularity for subelliptic quasilinear equations

Here we are concerned with the interior C∞ regularity of solutions of the subelliptic quasi-
linear equation

EX(u) =
m∑

i, j=1

ai j (x, u, Xu)Xi X j u + b(x, u, Xu) = 0

where ai j , b ∈ C∞(�×R
m+1) and for (x, u, ξ) ∈ �×R

m+1, the (m×m)matrix ai j (x, u, ξ)
is positive definite and we assume the fundamental hypothesis (A1) and (A2) on the system X.
As we are interested in the local behaviour of solutions we may work in a neighbourhood
Vx0 of a point x0 ∈ M where the exponential map ( a local diffeomorphism) used to define
the quasi-metric ρ(x, y) is well defined.

We make use of the function spaces of Hölder type adapted to the geometry defined by
the system of vector fields which satisfy the fundamental assumptions (A1) and (A2) (see
Sect. 4). The first step in the proof of regularity consists in obtaining Schauder type estimates
in these spaces for solutions of the linear equation associated to Hörmander’s operator LX,
which in turn follow from the existence and estimates for the associated Green’s kernel.

9.1 The interior regularity of solutions

We are now in a position to formulate the main interior regularity result for solutions of the
second order subelliptic quasilinear equation of the form EX(u) = 0.
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Theorem 6 Assume that the system of vector fields satisfy the assumptions (A1) and (A2). If
u ∈ C 2,α(V,X) is a solution of the quasilinear equation
EX(u) = 0 where

ai j , b ∈ C∞(V × R × R
m)

and

(ai j (x, u, ξ)) is an m × m positive definite matrix for all (x, u, ξ) ∈ V × R × R
m

then u ∈ C∞(V ).

10 Sketch of proof of the main interior regularity

The proof is an adaptation of the proof of the classical regularity theorem for linear and
quasilinear elliptic equations based on the use of the Green’s operator (rather the Green’s
kernel) and the Schauder type estimates derived from estimates on the Green’s kernel.

(a) Hörmander’s operator LX and its Green’s operator
Assume the system of vector fields X satisfies the hypotesis (A1) and (A2) and consider

the operator of Hörmander

LX =
m∑

j=1

X2
j + c(x), with c ∈ C∞(�), c(x) ≤ c0 < 0

Definition 3 A positive operator G : C0(M) → C0(M) is said to be the Green’s operator
for LX with the Dirichlet boundary condition if

f → u = G f is a solution of the equation LXu = − f in M

and satisfies the homogeneous Dirichlet condition u = 0 on ∂M .

By the hypoellpticity theorem of Hörmander for LX, under the hypothesis (A1) we know
that if, in an open set ω ⊂ M , f ∈ C∞(ω) then u = G f ∈ C∞(ω).

Next, by the kernel theorem of Schwartz, G has a distribution kernel g ∈ D ′(M × M),
called the Green’s kernel for LX:

〈g, ϕ ⊗ f 〉 = 〈G f, ϕ〉 , for all f, ϕ ∈ D(M)

We have the following result due to Bony [1] and [2]:

Theorem 7 There exists a Green’s kernel g ∈ D ′(M × M) for LX such that

1. g(x, y) > 0 in the sense of distributions on M × M;
2. g ∈ C∞((M × M)\diagonalin M));
3. f → G f (x) = ∫

ω
g(x, y) f (y) dy, for f ∈ C∞(ω) forω ⊂⊂ M is the Green’s operator

for LX;

Moreover, when N ≥ 3, we have

(a)

|X J g(x, y)| ≤ cJ |Bρ(x, ρ(x, y))|−1ρ(x, y)2−|J |,
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where

J = ( j1, . . . , jl), ji ∈ {1, . . . ,m}
where the differentiations X ji act either in the variables x or in the variables y and

(b) in a neighbourhood of the diagonal �M in M × M

−g(x, y) ≥ c′ρ(x, y)2|Bρ(x, ρ(x, y))|−1

We assume from now on that M is itself the exponential mapping neighbouhood V = Vx0

of a point x0 ∈ M .

Theorem 8 Let R > 0 be such that Bρ(x0, 2R) ⊂ V . If f ∈ C 0,α(V,X) with supp. f ⊂
Bρ(x0, R) with α > 0 define

v(x) = G f (x) =
∫

Bρ(x0,R)
g(x, y) f (y) dy

Then f → G f is a continuous linear mapping of C 0,α(Bρ(x, R),X) into C 2,α(Bρ(x, R),X)

Proof Using the estimate (a) for g we can differentiate under the integral sign to get

X jv(x) =
∫

Bρ(x0,R)
(X x

j g)(x, y) f (y) dy

(Here X x
j g means that the vector field X j acts as a derivation in x). To estimate the second

derivatives Xi X jv it is standard to avoid a neighbourhood of the diagonal using a cut off
function. Let
η ∈ C∞(R) be such that 0 ≤ η ≤ 1 and η(t) = 0 in t ≤ 1, η(t) = 1 in t ≥ 2. Define

ηε(x, y) = η(
ρ(x, y)

ε
) = 0 when ρ(x, y) ≤ ε and ηε(x, y) = 1 when ρ(x, y) ≥ 2ε

and

vε(x) =
∫

Bρ(x0,R)
ηε(x, y)g(x, y) f (y) dy ∈ C1(Bρ(x

0,R))

Then it is easy to check, using the estimate (a) for g, that

vε → v and X jvε → X jv as ε → 0, j = 1, . . . ,m

In fact we have
∫

Bρ(x0,R)
|(X jvε)(x)− (X jv)(x)| dx ≤ cε sup

Bρ(x0,R)
|f(x)| = cε‖f; C 0(Bρ(x

0,R),X)‖

A somewhat technical estimate by making use of a result of Rothschield and Stein [6] one
obtains

(Xi X jv(x) =
∫

Bρ(x0,R)
|(X x

i X x
j g)(x, y)[ f (x)− f (y)] dy + f(x)

∫

Bρ(x0,R)
g0

ij(x, y) dy

where g0
i j satisfies an estimate similar to that for X J g with |J | = 2 and from this we obtain

the following estimate:

|(Xi X jv)(x)− (Xi X jv)(x
′)| ≤ cρ(x, x ′)α.[ f ]X,α,Bρ(x0,R).

By a bootstrap argument we then get the following �
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Theorem 9 If f ∈ C k,α(V,X) with k ∈ N and α ∈ (0, 1) with supp. f ⊂ Bρ(x0, R) then
v ∈ C k+2,α(V,X) and we have the estimate

‖v,C k+2,α(V,X)‖ ≤ const.‖ f ; C k,α(V,X)‖
This result extends to inhomogeneous equation of Hörmander:

LXu =
m∑

j=1

X2
j u + c(x)u = f, with f, c ∈ C∞ and c(x) ≤ c0 < 0

by writing u = v + w where

LXv = 0 and w(x) =
∫

g(x, y) f (y) dy.

For the equation LXu = f in V = Vx0 , take t, s ∈ R with 0 < t < s ≤ 1 and

ζ ∈ D(Bρ(x
0, s R)) such that ζ(x) = 1 in Bρ(x

0, t R).

Then

LX(ζu) = ζ(LXu)−
m∑

j=1

[(X∗
j ζ )(X j u)+ (X jζ )(X

∗
j u)] − (LX(ζ ))u

and we conclude to obtain

Theorem 10 If f ∈ C k,α(V,X) for some k ∈ N and α ∈ (0, 1) and if u ∈ C 2,α(V,X)) is a
weak solution of LXu = f then u ∈ C k+2,α(V,X) and satisfies an estimate of the form

‖u,C k+2,α(V,X)‖ ≤ c‖ f,C k,α(V,X)‖ + c′

where the constant c′ is independent of f and depends on a bound for the solution of the
homogeneous equation LXv = 0.

10.1 General second order linear subelliptic equation

Consider the linear second order equation of the form

PX(u) =
m∑

i, j=1

ai j (x)Xi X j u +
m∑

j=1

a j (x)X j u + a0(x)u = f

where ai j , a j , a0 ∈ C∞(M,R) and (ai j (x)) is a symmetric m × m-matrix for all x ∈ �.

Theorem 11 Suppose the coefficients ai j , a j , a0 ∈ C k,α(M,X) for k ∈ N and α ∈ (0, 1)
such that, for all x ∈ �, (ai j (x)) is a positive definite m × m-matrix. If u ∈ C 2,α(M,X) is
a solution of PX(u) = f in M then u ∈ C k+2,α(M,X) whenever f ∈ C k,α(M,X)

Proof For every x0 ∈ M there is an R0 > 0 such that Bρ(x0, 2R) ⊂ Vx0 , the exponential
mapping neighbourhood used to define the quasi-metric ρ(x, y). Freezing the coefficients at
x0 let

P0 =
m∑

i. j=1

ai j (x
0)Xi X j + c0, with c0 < 0.
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Here A = (ai j (x0)) is positive definite. Let {λ1, . . . , λm} be the eigen-values of A. Then
there exists a nonsingular m × m-matrix Q such that

Q−1 AQ = D = diag[λ− 1
2

1 , . . . , λ
− 1

2
m ] = (λ

− 1
2

j ).

Let Y = QX. The operator P0 is transformed to the Hörmander type operator LY =∑m
j=1 Y 2

j and the system of vector fields Y = {Y1, . . . , Ym} satisfy the assumptions (A1)
and (A2) and we get a new quasi-metric σ (which is equivalent to ρ) defined by the geometry
associated to the new system Y.

We also have

C k,α(V,X) = C k,α(V,Y) for all k ∈ N and α ∈ (0, 1).

then we have the regularity of v of class C k+2,α(V,Y) for solutions of the equation P0v =
g ∈ C k,α(V,Y) together with a precise estimate.

Finally we write

PXu = P0u + b0u

= f −∑
i j

[ai j (x)− ai j (x0)]Xi X j u −∑
j

b j (x)X j u + (b0(x)− c0(x))u.

The conclusion follows using the previous result together with the estimate and the interpo-
lation lemma. �

10.2 The general quasilinear equation

Theorem 12 Let u ∈ C 2,α(V,X) be a solution of the quasilinear subelliptic equation

m∑

i, j=1

ai j (x, u,Xu)Xi X j u + b(x, u, Xu) = 0 in M

where ai j , b ∈ C∞(�×R×R
m; R) and for all (x, u, ξ) ∈ �×R

m+1 the matrix (ai j (x, u, ξ))
is positive definite. Then u ∈ C∞(M).

Proof We argue as before in the exponential mapping neighbourhood V = Vx0 of a point
x0 ∈ M . We take ai j (x) = ai j (x, u(x), Xu(x)) and f (x) = b(x, u, Xu(x)) so that ai j , f ∈
C 1,α(V ; X). By the above argument for the linear equations we get u ∈ C 3,α(V,X). This
in turn implies that ai j , f ∈ C 2,α(V ; X) from which we deduce from the linear equations
argument that u ∈ C 4,α(V ; X). The bootstrap argument can be continued to conclude that
u ∈ C k,α(V ; X) for all k ∈ N. Then by the embedding theorem for C k,α(V ; X) in the
classical Hölder spaces it follows that u ∈ C∞(V ). �
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